Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add filters

Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.15.21258928

ABSTRACT

Surveillance testing and quarantine have been effective measures for limiting SARS-CoV-2 transmission on university campuses. However, the importance of these measures needs to be re-evaluated in the context of a complex and rapidly changing environment that includes vaccines, variants, and waning immunity. Also, recent guidelines from the CDC suggest that vaccinated students do not need to participate in surveillance testing. We used an agent-based SEIR model to evaluate the utility of surveillance testing and quarantine in a fully vaccinated student population where vaccine effectiveness may be impacted by the type of vaccination, the presence of variants, and the loss of vaccine-induced or natural immunity over time. We found that weekly surveillance testing at 90% vaccine effectiveness only marginally reduces viral transmission as compared to no testing. However, at 50%-75% effectiveness, surveillance testing can provide over 10-fold reduction in the number of infections on campus over the course of the semester. We also show that a 10-day quarantine protocol for exposures has limited effect on infections until vaccine effectiveness drops to 50%, and that increased surveillance testing for exposures is at least as effective as quarantine at limiting infections. Together these findings provide a foundation for universities to design appropriate mitigation protocols for the 2021-2022 academic year.

2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.17.21255663

ABSTRACT

As SARS-CoV-2 continues to spread globally, questions have emerged regarding the strength and durability of immune responses in specific populations. In this study, we evaluated humoral immune responses in 69 children and adolescents with asymptomatic or mild symptomatic SARS-CoV-2 infection. We detected robust IgM, IgG, and IgA antibody responses to a broad array of SARS-CoV-2 antigens at the time of acute infection and 2 and 4 months after acute infection in all participants. Notably, these antibody responses were associated with virus neutralizing activity that was still detectable 4 months after acute infection in 94% of children. Moreover, antibody responses and neutralizing activity in sera from children and adolescents were comparable or superior to those observed in sera from 24 adults with mild symptomatic infection. Taken together, these findings indicate children and adolescents with mild or asymptomatic SARS-CoV-2 infection generate robust and durable humoral immune responses that are likely to protect from reinfection.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.20.21252680

ABSTRACT

Children are less susceptible to SARS-CoV-2 and typically have milder illness courses than adults. We studied the nasopharyngeal microbiomes of 274 children, adolescents, and young adults with SARS-CoV-2 exposure using 16S rRNA gene sequencing. We find that higher abundances of Corynebacterium species are associated with SARS-CoV-2 infection and SARS-CoV-2-associated respiratory symptoms, while higher abundances of Dolosigranulum pigrum are present in SARS-CoV-2-infected individuals without respiratory symptoms. We also demonstrate that the abundances of these bacteria are strongly, and independently, associated with age, suggesting that the nasopharyngeal microbiome may be a potentially modifiable mechanism by which age influences SARS-CoV-2 susceptibility and severity.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.31.424729

ABSTRACT

SARS-CoV-2 neutralizing antibodies (NAbs) protect against COVID-19, making them a focus of vaccine design. A safety concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated potent NAbs against the receptor-binding domain (RBD) and the N-terminal domain (NTD) of SARS-CoV-2 spike protein from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV-1 infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of antibody binding. Select RBD NAbs also demonstrated Fc receptor-{gamma} (Fc{gamma}R)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated Fc{gamma}R-independent in vitro infection enhancement. However, both in vitro neutralizing and infection-enhancing RBD or infection-enhancing NTD antibodies protected from SARS-CoV-2 challenge in non-human primates and mice. One of 30 monkeys infused with enhancing antibodies had lung pathology and bronchoalveolar lavage cytokine evidence suggestive of enhanced disease. Thus, these in vitro assessments of enhanced antibody-mediated infection do not necessarily indicate biologically relevant in vivo infection enhancement.


Subject(s)
Severe Acute Respiratory Syndrome , Tumor Virus Infections , COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.31.424961

ABSTRACT

Host-virus protein-protein interaction is the key component of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lifecycle. We conducted a comprehensive interactome study between the virus and host cells using tandem affinity purification and proximity labeling strategies and identified 437 human proteins as the high-confidence interacting proteins. Functional characterization and further validation of these interactions elucidated how distinct SARS-CoV-2 viral proteins participate in its lifecycle, and discovered potential drug targets to the treatment of COVID-19. The interactomes of two key SARS-CoV-2 encoded viral proteins, NSP1 and N protein, were compared with the interactomes of their counterparts in other human coronaviruses. These comparisons not only revealed common host pathways these viruses manipulate for their survival, but also showed divergent protein-protein interactions that may explain differences in disease pathology. This comprehensive interactome of coronavirus disease-2019 provides valuable resources for understanding and treating this disease.


Subject(s)
Coronavirus Infections , COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.30.424906

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has become a serious global threat. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for this pandemic has imposed a severe burden on the medical settings. The spike (S) protein of SARS-CoV-2 is an important structural protein playing a key role in the viral entry. This protein is responsible for the receptor recognition and cell membrane fusion process. The recent reports of the appearance and spread of new SARS-CoV-2 strain has raised alarms. It was reported that this new variant containing the prominent active site mutation in the RBD (N501Y) was rapidly spreading within the population. The reported N501Y mutation within the spike's essential part, known as the receptor-binding domain has raised several questions. Here in this study we have tried to explore the effect of N501Y mutation within the spike protein using several in silico approaches


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.02.424974

ABSTRACT

COVID-19, caused by SARS-CoV-2, was first reported in China in 2019 and has transmitted rapidly around the world, currently responsible for 83 million reported cases and over 1.8 million deaths. The mode of transmission is believed principally to be airborne exposure to respiratory droplets from symptomatic and asymptomatic patients but there is also a risk of the droplets contaminating fomites such as touch surfaces including door handles, stair rails etc, leading to hand pick up and transfer to eyes, nose and mouth. We have previously shown that human coronavirus 229E survives for more than 5 days on inanimate surfaces and another laboratory reproduced this for SARS-CoV-2 this year. However, we showed rapid inactivation of Hu-CoV-229E within 10 minutes on different copper surfaces while the other laboratory indicated this took 4 hours for SARS-CoV-2. So why the difference? We have repeated our work with SARS-CoV-2 and can confirm that this coronavirus can be inactivated on copper surfaces in as little as 1 minute. We discuss why the 4 hour result may be technically flawed.


Subject(s)
COVID-19
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.02.424917

ABSTRACT

SARS-CoV-2 infection of the respiratory system can evolve to a multi-system disease. Excessive levels of proinflammatory cytokines, known as a "cytokine storm" are associated with high mortality rates especially in the elderly and in patients with age-related morbidities. Senescent cells, characterized by secretion of such cytokines (Senescence Associated Secretory Phenotype - SASP), are known to occur in this context as well as upon a variety of stressogenic insults. Applying both: i) a novel "in house" antibody against the spike protein of SARS-CoV-2 and ii) a unique senescence detecting methodology, we identified for the first time in lung tissue from COVID-19 patients alveolar cells acquiring senescent features harboring also SARS-CoV-2. Moreover, using the same detection workflow we demonstrated the inflammatory properties of these cells. Our findings justify the application of senotherapeutics for the treatment or prevention of COVID-19 patients.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , COVID-19
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.19.225854

ABSTRACT

COVID-19 (coronavirus disease 2019) is a pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome-coronavirus 2) infection affecting millions of persons around the world. There is an urgent unmet need to provide an easy-to-produce, affordable medicine to prevent transmission and provide early treatment for this disease. The nasal cavity and the rhinopharynx are the sites of initial replication of SARS-CoV-2. Therefore, a nasal spray may be a suitable dosage form for this purpose. The main objective of our study was to test the antiviral action of three candidate nasal spray formulations against SARS-CoV-2. We have found that iota-carrageenan in concentrations as low as 6 {micro}g/ mL inhibits SARS-CoV-2 infection in Vero cell cultures. The concentrations found to be active in vitro against SARS-CoV-2 may be easily achieved by the application of nasal sprays already marketed in several countries. Xylitol at a concentration of 5 % m/V has proved to be viricidal on its own and the association with iota-carrageenan may be beneficial, as well.


Subject(s)
COVID-19 , Coronavirus Infections
10.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.18.20166835

ABSTRACT

BACKGROUNDChildren with SARS-CoV-2 infection typically have mild symptoms that do not require medical attention, leaving a gap in our understanding of the spectrum of illnesses that the virus causes in children. METHODSWe conducted a prospective cohort study of children and adolescents (<21 years of age) with a SARS-CoV-2-infected close contact. We collected nasopharyngeal or nasal swabs at enrollment and tested for SARS-CoV-2 using a real-time PCR assay. RESULTSOf 382 children, 289 (76%) were SARS-CoV-2-infected. SARS-CoV-2-infected children were more likely to be Hispanic (p<0.0001), less likely to have a history of asthma (p=0.009), and more likely to have an infected sibling contact (p=0.0007) than uninfected children. Children ages 6-13 years were frequently asymptomatic (38%) and had respiratory symptoms less often than younger children (30% vs. 49%; p=0.008) or adolescents (30% vs. 59%; p<0.0001). Compared to children ages 6-13 years, adolescents more frequently reported influenza-like (61% vs. 39%; p=0.002), gastrointestinal (26% vs. 9%; p=0.003), and sensory symptoms (43% vs. 9%; p<0.0001), and had more prolonged illnesses [median (IQR) duration: 7 (4, 12) vs. 4 (3, 8) days; p=0.004]. Despite the age-related variability in symptoms, we found no differences in nasopharyngeal viral load by age or between symptomatic and asymptomatic children. CONCLUSIONSHispanic ethnicity and an infected sibling close contact are associated with increased SARS-CoV-2 infection risk among children, while a history of asthma is associated with decreased risk. Age-related differences in the clinical manifestations of SARS-CoV-2 infection must be considered when evaluating children for COVID-19 and in developing screening strategies for schools and childcare settings.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL